Smart Ticketing Alliance - Certification Working Group

STA Contactless Interface Certification for Public Transport Products Test Tools Validation Methodology

Author: Editor:

REVISION LIST

Version	Date	Modifications
V1.0	20/10/2016	For publication after the CWG meeting on October 20 th 2016
V1.1	14/06/2017	Version applicable for PCD and PICC testing according CEN/TS 16794:2015
V2.0	06/07/2018	Version applicable for PCD and PICC testing according to CEN/TS 16794:2017
V2.1	16/11/2018	Version applicable for PCD and PICC testing according to CEN/TS 16794:2017 Updated for PCD testing
V2.2	19/06/2020	Correction of some minor mistakes Updated tolerance margin for PCD EMD testing

Table of Contents

1	Scop	oe	5
2	Refe	rences	6
3	Test	Tools Definition	7
4	Prod	ess for Defining the Reference Test Results	8
5	Prod	ess for Introducing a New Reference Sample	. 10
6	Test	Tools Validation Process for a New Applicant Laboratory	. 11
7	Арр	licable Processes During Accreditation Period	. 13
7	'. 1	Modification of Test Tools	. 13
7	.2	Maintenance of Test Tools	. 13
8	Peri	odic Renewal of Test Tools Validation	. 14
9	Mig	rating from CEN/TS 16794:2015 to CEN/TS 16794:2017	. 15
Anr	nex A	Reference Samples	. 16
Anr	nex B	Test Tables	. 17
В	3.1	PICC Tests	. 17
В	3.2	PCD Tests	. 17
Anr	nex C	ICS of Reference Samples used for Test Tools Validation	. 18
C	.1	ICS for Contactless Fare Media – PICC Calypso CD 21 Rev. 3.2	. 18
C	2	ICS for Contactless Fare Media – PICC ITSO DESFire	. 22
C	3	ICS for Contactless Reader – PCD VPE 415	. 25
C	.4	ICS for Contactless Reader – PCD Workabout Pro 3	. 28
Anr	nex D	Tolerance Margin Definition	. 33
C	0.1	Tolerance Margin for PICC Analog Tests	. 33
).2	Tolerance Margin for PCD Analog Tests	. 33

Acronyms

CWG Certification Working Group

ICS Implementation Conformance Statement

PCD Proximity Coupling Device

PICC Proximity Integrated Circuit Card

RF Radio Frequency

STA Smart Ticketing Alliance

Terms and Definition

Applicant Laboratory: Any Test Laboratory which initiates an accreditation procedure in order to join the Smart Ticketing Alliance Certification program.

Certification Body: Third-party entity, member of the STA or sponsored by a STA member, in charge of the certification process as described in the ISO 17065:2012.

Implementation Conformance Statement: Document used for detailed identification of a product or system.

Product: Product, system or solution for which the certification of compliance with the Standard is requested.

Reference Sample: Sample of a Product under test to be delivered by STA to any Applicant Laboratory.

Reference Test Results: Measurements established after a first set of round robin tests of Reference Samples by chosen Test Laboratories. These measurements will be considered as the reference for future Applicant Laboratories.

Round robin tests: Tests performed independently by each Applicant Laboratory on the Reference Samples.

Test Laboratory: Entity performing the Evaluation of a Product.

Test Report: Report produced by the Test Laboratory as defined in clause 3.3 of the Technical Guidelines (see [REF4]).

Test Results: Set of measurements produced by the Test Laboratory after Product testing.

Test Tools: Set of test apparatus and test circuits used for testing the contactless communication of Products.

Vendor: Provider of the Product which is candidate for certification.

1 Scope

This document aims to define the process for validating the Test Tools of Applicant Laboratories part of the Smart Ticketing Alliance Certification program for contactless communication between fare media and ticketing equipment.

The document describes the Test Tools validation process, as well as the Reference Samples and the tests to be performed by the Applicant Laboratories to ensure a successful validation.

This version includes the definition of round robin tests for certification based on STA Technical Guidelines 2.0 and CEN/TS 16794:2017.

2 References

The following documents, in whole or in part, are referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendment) applies.

The STA documents are available in the STA repository (www.smart-ticketing.org).

[REF1] ISO/IEC 10373-6:2016, Identification cards — Test methods — Part 6: Proximity cards

[REF2] CEN/TS 16794-1:2017, Public transport — Communication between contactless readers and fare media — Part 1: Implementation requirements

[REF3] CEN/TS 16794-2:2017, Public transport — Communication between contactless readers and fare media — Part 2: Test plan for ISO/IEC 14443

[REF4] STA - Contactless Interface Certification for Public Transport Products - Technical Guidelines v2.0

[REF5] STA - Contactless Interface Certification for Public Transport Products - Certification Procedure v1.1

[REF6] ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories

3 Test Tools Definition

During the contactless test process, Products under test will communicate with a test bench. The test bench shall conform to the specifications set out in the ISO/IEC 10373-6 test methods [REF1].

In the present document, Test Tools are the test apparatus and test circuits making up such test bench and specified in the ISO/IEC 10373-6 test methods [REF1] for verifying the operation of a PICC or a PCD under test.

The Test Tools includes mainly:

- Measurement instruments
- Calibration coil
- Test PCD assembly
- Reference PICCs

4 Process for Defining the Reference Test Results

Prior to Test Tools validation by Applicant Laboratories, Reference Test Results need to be defined. It has been established that at least 2 recognized independent Test Laboratories will be asked to perform round robin tests on the Reference Samples. The choice of these Test Laboratories will be defined by STA CWG. Values obtained will be assessed for establishing a unique set of Reference Test Results for future Applicant Laboratories.

During the process for the establishment of Reference Test Results, STA CWG will act as the sole accountable authority for defining those Reference Test Results and as the holder of the Reference Samples.

Figure 1 shows the process for building and maintaining the Reference Test Results for each Reference Sample:

- 1. STA CWG successively sends the Reference Sample to each Test Laboratory, together with the corresponding ICS and required components in case of multicomponent Products.
- 2. Each Test Laboratory performs tests of the Reference Sample following STA Technical Guidelines [REF4].
- 3. Tests Report are sent to STA CWG, based on the template defined in Annex A of the CEN/TS 16794-2 test plan [REF3].
- 4. For this Reference Sample, STA CWG will collect and compare measurements of the Test Laboratories.
- 5. In case of divergent values between Test Laboratories, a joint investigation will be held for understanding the possible reasons. Corrective actions may be:
 - Clarifications in the CEN/TS 16794-2 test plan [REF3]
 - Modifications of testing tools or testing method by the relevant Test Laboratory.

Involved Test Laboratories may need to perform tests again.

6. If the values of each Test Laboratory are consistent, STA CWG will establish Reference Test Results for this Reference Sample.

The pool of experts of STA CWG will define in the Reference Test Results the uncertainty threshold applicable to each test.

Reference Test Results are confidential and shall not be distributed outside STA CWG.

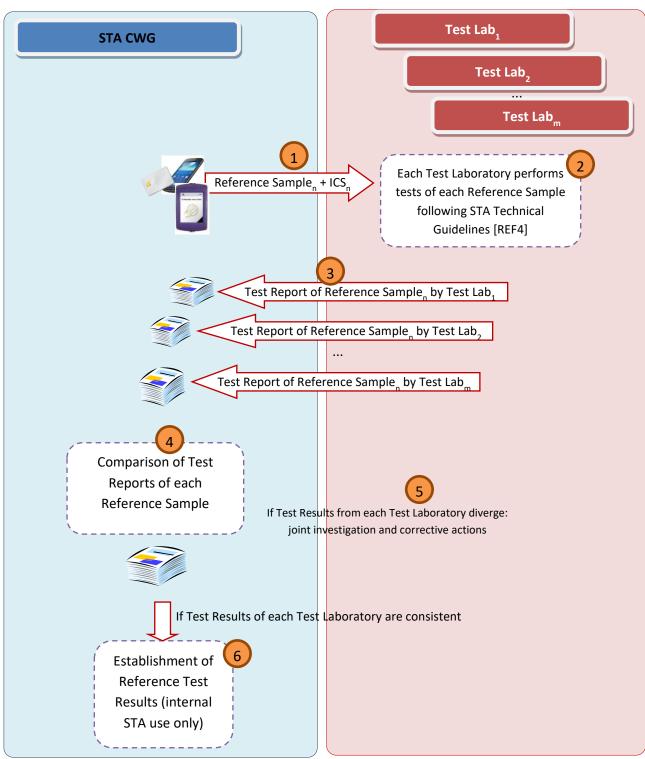
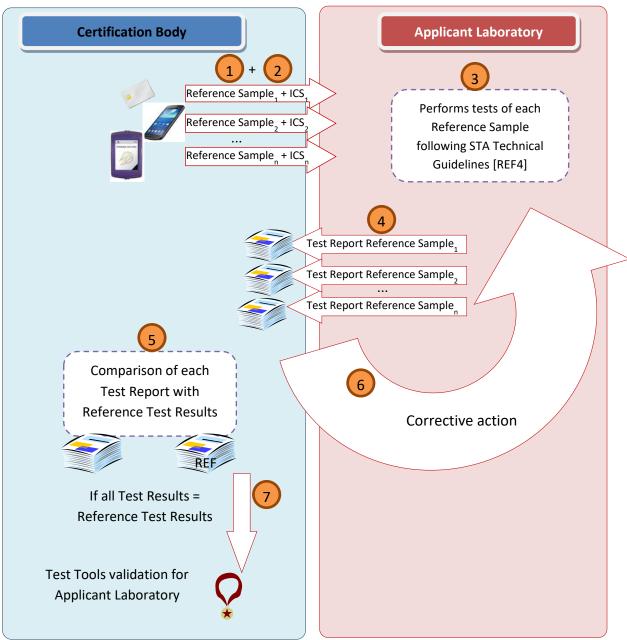


Figure 1: Process for Defining Reference Test Results

5 Process for Introducing a New Reference Sample

If a Ticketing Scheme wishes to submit a new Reference Sample to be included in STA CWG scope, STA CWG will decide upon its relevance.

If STA CWG decides to add new Products to its scope, it will provide Reference Samples to the Test Laboratories for defining the Reference Test Results following the process described in the previous section.


6 Test Tools Validation Process for a New Applicant Laboratory

A new Applicant Laboratory seeking to have its Test Tools validated should follow the process defined below:

- 1. The Applicant Laboratory will receive from STA Certification Body a set of Reference Samples listed in Annex A of this document. Those Reference Samples shall be the same items for any Applicant Laboratory, in order to get comparable measurement results. In case of multi component Products, the whole set of components will be provided.
- 2. Each Reference Sample is provided with an ICS (Implementation Conformance Statement) listing the characteristics of the Reference Sample to be tested. The ICS of Reference Samples are given in Annex C of this document.
- 3. For each Reference Sample, the Applicant Laboratory shall perform the tests listed in Section Annex B, according to the process defined in STA Technical Guidelines [REF4].
- 4. The Applicant Laboratory shall produce a Test Report, based on the template defined in Annex A of the CEN/TS 16794-2 test plan [REF3].
- 5. The Test Results shall be conformant to the Reference Test Results, which will have been previously defined by STA as described in section 4.
- 6. If the Test Results provided by the Applicant Laboratory diverge from the Reference Test Results, the Applicant Laboratory will be notified by the Certification Body. Where appropriate, the Applicant Laboratory may be required to re-perform some tests.
- 7. If the Test Results from the Applicant Laboratory for all the tested Reference Samples are consistent with the Reference Test Results within the tolerance margin defined for each test the Test Tools from the Applicant Laboratory will be stated by the Certification Body as validated. The Test Tools validation is granted to the Applicant Laboratory for a 3-year period.

The tolerance margin applicable for each test is defined in Annex D.

Figure 2: Process for STA Test Tool Validation

Please note that the tests aim at validating the Test Tools used by the Applicant Laboratory. The Test Tools validation process cannot be considered as a certification process for the tested Reference Samples.

7 Applicable Processes During Accreditation Period

As required in the STA Certification Procedure [REF5], Test Laboratories shall be ISO/IEC 17025 accredited for CEN/TS 16794.

The accreditation process taking some time; for Test Laboratories performing STA test evaluation which are not yet ISO/IEC 17025 accredited for CEN/TS 16794, the processes described in sections 7.1 and 7.2 shall apply.

These processes shall be replaced by ISO/IEC 17025 processes once the Test Laboratory becomes ISO/IEC 17025 accredited for CEN/TS 16794.

7.1 Modification of Test Tools

In the case of major hardware or software modification of any product composing the Test Tools of an Applicant Laboratory, the Test Tools validation process defined in Section 6 shall be re-executed, as ruled in the ISO/IEC 17025 requirements [REF6].

NOTE A major hardware or software modification of any product composing the Test Tools corresponds to a hardware or software change to this product that implies that its conformance with the ISO/IEC 17025 requirements [REF6] can no longer be guaranteed.

7.2 Maintenance of Test Tools

From time to time, each Test Laboratory shall run some validation tests to verify that its Test Tools are in proper configuration and provide the same Test Results for a set of Test Laboratory's PICC and PCD samples.

The following minimum subset of tests from the CEN/TS 16794-2 test plan [REF3] shall be run:

- For PICC:
 - Conformance of the PICC transmission tests described in §7.2.2, at ambient temperature, at H_{min} and at H_{max} , and bit rates of fc/128
- For PCD:
 - Conformance of the PCD modulation waveform tests described in $\S6.3$, at ambient temperature and at bit rates of fc/128

The frequency for executing those tests is left at the convenience of the Test Laboratory, but in all cases, those tests shall have been successfully performed less than 3 months before the start date of a new test session.

Test Results shall be kept and registered in accordance with the ISO/IEC 17025 defined process.

8 Periodic Renewal of Test Tools Validation

Test Tools validation shall be automatically terminated after 3 years, unless the Test Laboratory has executed again and successfully the following validation process.

The Test Laboratory shall run validation tests to verify that its Test Tools are in proper configuration and provide Test Results for one PICC and one PCD Reference Samples which are consistent with the Reference Test Results.

This validation shall be executed on an applicable version of the Certification Process and, if successful, it will extend again for 3 years the validity of Test Tools validation of the Test Laboratory for that version.

9 Migrating from CEN/TS 16794:2015 to CEN/TS 16794:2017

An Applicant Laboratory seeking to have its Test Tools validated according to CEN/TS 16794:2017 and which has already had its Test Tools validated according to CEN/TS 16794:2015 should execute a test campaign using only the new or modified tests listed in the section 4.2 of the STA Technical Guidelines [REF4], and named hereafter "certification upgrade tests".

For PCD tests, certification upgrade tests shall be performed on the Xerox Reference PCD.

For PICC tests, certification upgrade tests shall be performed on the CD 21 Rev. 3.2 and ITSO DESFire Reference PICC, at ambient temperature only.

Annex A Reference Samples

The Reference Samples which will be sent to each Applicant Laboratory are listed in the table below:

	Product Name	Component	Type of product	Vendor	Comments
1	CD 21 Rev. 3.2	PICC	Contactless card	ST Microelectronics	Certified EMVCO L1 with Calypso rev. 3 application
2	ITSO DESFire	PICC	Contactless card	NXP	ITSO Application to Version 2.1.4
3	VPE 415	PCD	Bus validator	Xerox (now Conduent)	
4	Workabout Pro 3	PCD	Handheld terminal	Zebra (ex PSION)	

Table 1: Reference Samples for Applicant Laboratories Test Tools Validation

Annex B Test Tables

The following tables show the tests to be performed for each Reference Sample. Implementation requirements are described in CEN/TS 16794-1 [REF2], and tests are detailed in CEN/TS 16794-2 [REF3]. For optimisation purposes, it is not required that Applicant Laboratories perform all the tests of the CEN/TS 16794-2 [REF3] on each Product.

The second row of the tables indicate the sections in the CEN/TS 16794-2 test plan [REF3] where the test to be executed are defined for each Reference Sample.

B.1 PICC Tests

Test	s to be performed:	Analog PICC tests (T° min)	Analog PICC tests (Ambient T°)	Analog PICC tests (T° max)	Protocol and Digital PICC tests
Corresponding section in [REF3]:		Sect. 7	Sect. 7	Sect. 7	Sect. 9
1	CD 21 Rev. 3.2	Х	X	X	Х
2	ITSO DESFire		Χ		Χ

Table 2: PICC tests to perform for testing tool validation

B.2 PCD Tests

Tests to be performed:	Analog PCD tests (T° min)	Analog PCD tests (Ambient T°)	Analog PCD tests (T° max)	Protocol and Digital PCD tests
Corresponding section in [REF3]:	Sect. 6	Sect. 6	Sect. 6	Sect. 8
3 VPE 415	X	X	Χ	Х
4 Workabout Pro 3		Χ		X

Table 3: PCD tests to perform for testing tool validation

The PCD shall be reset before performing the test "H.4.3 Error detection and recovery" mentioned in the CEN/TS 16794-2 test plan [REF3].

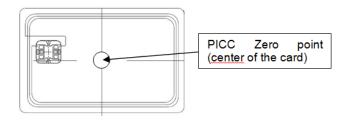
Annex C ICS of Reference Samples used for Test Tools Validation

C.1 ICS for Contactless Fare Media – PICC Calypso CD 21 Rev. 3.2

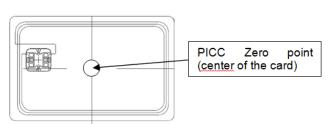
[PICC1] Administrative data

Vendor name: ST Microelectronics

[PICC1.1] Brand name: ST23ZR08/QQL, ST23ZR04/QQL, ST23ZR02/QQL


[PICC1.2] Trade name: CD21-Rev3.2

[PICC1.3] Serial number: N/A


[PICC1.4] Hardware/Software version: Calypso ROM version 10h

[PICC2] General technical characteristics

[PICC2.1] Antenna diagram and position on the PT object under test:

[PICC2.2] Reference of PICC Zero Point (target ID-marked on sample or photo or diagram):

[PICC2.3] Operational temperature range supported:

Class A (Ambient)

Class I (−10 °C to + 50 °C) ⊠

[PICC2.4] Antenna class according to ISO/IEC 14443:

Unclassified ☐ "Class 1" ⊠ "Class 2" ☐ "Class 3" ☐

[PICC3] Protocol characteristics

[PICC3.1] Supported communication signal interface(s) and protocol(s):

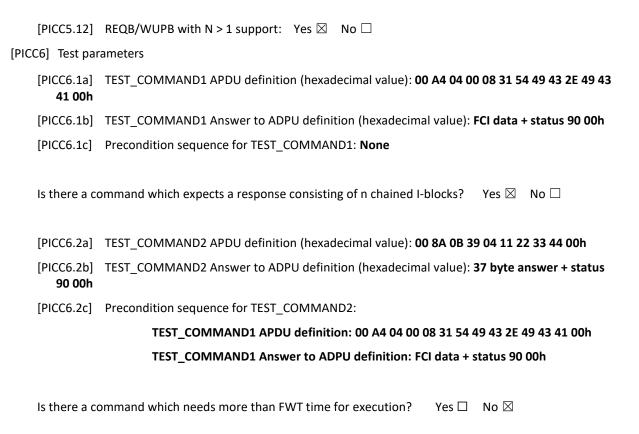
Type A \square Type B \boxtimes Other:

[PICC4] Type A (where applicable)

This section is N/A.

[PICC4.1] PCD -> PICC bit rates supported: fc/128 (~106 kbit/s) \square Other:

[PICC4.2] PICC -> PCD bit rates supported: fc/128 (~106 kbit/s) \square Other:


[PICC4.3] Only symmetrical bit rates supported: Yes \square No \square

	[PICC4.4]	UID: Single s	ize (4 bytes) □	Double Size (7 bytes) □	Triple size (10 bytes) □
	[PICC4.5]	UID value:	fixed number \square	random number \square	
	[PICC4.6]	FWI:			
	[PICC4.7]	SFGI:			
	[PICC4.8]	FSCI:			
	[PICC4.9]	CID support:	Yes □ No □		
	[PICC4.10]	NAD support:	Yes □ No □		
	[PICC4.11]	S(PARAMETERS)	support: Yes □	No □	
[PIC	C5] Type B (where applicable)		
	[PICC5.1]	PCD -> PICC bit r	ates supported:	fc/128 (~106 kbit/s) ⊠	Other: ~212 and ~424 kbit/s
	[PICC5.2]	PICC -> PCD bit r	ates supported:	fc/128 (~106 kbit/s) ⊠	Other: ~212 and ~424 kbit/s
	[PICC5.3]	Only symmetrica	al bit rates suppor	ted: Yes ⊠ No □	
	[PICC5.4]	PUPI value:	fixed number $oxtimes$	random number \square	
	[PICC5.5]	FWI: 7			
	[PICC5.6]	Maximum Frame	e Size Code in ATC	QB: 7 (128 bytes)	
	[PICC5.7]	CID support:	Yes ⊠ No □		
	[PICC5.8]	NAD support:	Yes □ No ⊠		
	[PICC5.9]	Extended ATQB	support: Yes ⊠	No □	
	If yes, SF	GI: 0			
	[PICC5.10]	S(PARAMETERS)	support: Yes □	No ⊠	
	[PICC5.11]	All AFIs are supp	orted: Yes □	No ⊠	
		If not, indicate a	II supported AFI(s):	

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
0	Pass	Unm.	Pass	Pass	Pass	Pass										
1	Pass															
2	Pass															
3	Pass															
4	Pass															
5	Pass															
6	Pass															
7	Pass															
8	Pass															
9	RFU															
Α	RFU															
В	RFU															
С	RFU															
D	RFU															
E	Pass	Pass	Pass	RFU												
F	RFU															

[PICC6.3a] TEST_COMMAND3 APDU definition (hexadecimal value): No TEST_COMMAND3

[PICC6.3b] TEST_COMMAND3 Answer to ADPU definition (hexadecimal value): N/A

[PICC6.3c] Precondition sequence for TEST_COMMAND3: N/A

[PICC6.4] TEST_COMMAND_SEQUENCE:

TEST_COMMANI	TEST_COMMAND-SEQUENCE APDUs Command and Response					
Select	Command	00 A4 04 00 08 31 54 49 43 2E 49 43 41 00h				
Application	Expected response	FCI data + status 90 00h				
Open Session	Command	00 8A 0B 39 04 11 22 33 44 00h				
	Expected response (*)	37 bytes of response data + status 90 00h				
Read Record	Command	00 B2 01 44 1Dh				
'event log'	Expected response	29 bytes of response data + status 90 00h				
Read Record	Command	00 B2 01 F4 1Dh				
'contracts list'	Expected response	29 bytes of response data + status 90 00h				
Read Record	Command	00 B2 01 4C 1Dh				
'contract 1'						
	Expected response	29 bytes of response data + status 90 00h				
Append Record	Command	00 E2 00 40 1D 11 22 33 44 55 66 77 88 11 22 33				
		44 55 66 77 88 11 22 33 44 55 66 77 88 11 22 33				
		44 55h				
	Expected response	status 90 00h				
Close Session	Command	00 8E 00 00 04 11 22 33 44 00h				
	Expected response	Error status 69 88h				

^(*) Depending on the created structure, the Open session command can be different.

NOTE Usages of TEST_COMMAND1, TEST_COMMAND2 and TEST_COMMAND3 for PICC tests are defined in ISO/IEC 10373-6.

If the PICC requires additional sequences to be ready to accept TEST_COMMAND1, TEST_COMMAND2 or TEST_COMMAND3, those sequences should be described in the precondition sequence fields.

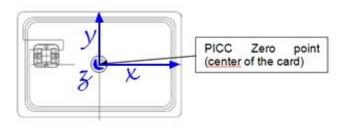
A test sequence (list of APDUs) shall be defined. The list shall contain at minimum 2 APDUs with their respective expected answer.

Since the use of cryptographic functions have a strong influence on the power consumption of the carrier medium and therefore on the parameters of its contactless interface, testing of the RF interface shall be conducted with those cryptographic functions that are employed by the specific application-to-application transactions.

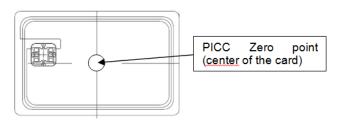
C.2 ICS for Contactless Fare Media – PICC ITSO DESFire

[PICC1] Administrative data

Vendor name: NXP


[PICC1.1] Brand name: MIFARE DESFire EV1
[PICC1.2] Trade name: MF3ICD4101DUD/05

[PICC1.3] Serial number: N/A


[PICC1.4] Hardware/Software version: Hardware: 01 / Software: 05

[PICC2] General technical characteristics

[PICC2.1] Antenna diagram and position on the PT object under test:

[PICC2.2] Reference of PICC Zero Point (target ID-marked on sample or photo or diagram):

[PICC2.3] Operational temperature range supported:

Class A (Ambient)

Class I (-10 °C to + 50 °C) ⊠

[PICC2.4] Antenna class according to ISO/IEC 14443:

Unclassified \square "Class 1" \boxtimes "Class 2" \square "Class 3" \square

[PICC3] Protocol characteristics

[PICC3.1] Supported communication signal interface(s) and protocol(s):

Type A \boxtimes Type B \square Other:

[PICC4] Type A (where applicable)

[PICC4.1] PCD -> PICC bit rates supported: fc/128 (~106 kbit/s) \boxtimes Other: ~212, ~424 and

~848 kbit/s

[PICC4.2] PICC -> PCD bit rates supported: fc/128 (~106 kbit/s) \boxtimes Other: ~212, ~424 and ~848 kbit/s

NOTE The other supported PCD -> PICC and PICC -> PCD bit rates are not tested in the scope of this document.

	[PICC4.3]	Only symmetrical bit rates supported: Yes \square No \boxtimes
	[PICC4.4]	UID: Single size (4 bytes) \square Double Size (7 bytes) \boxtimes Triple size (10 bytes) \square
	[PICC4.5]	UID value: fixed number \boxtimes random number \square
	[PICC4.6]	FWI: 0x8 (77.33 ms)
	[PICC4.7]	SFGI: 0x1 (604 μs)
	[PICC4.8]	FSCI: 0x5 (64 bytes)
	[PICC4.9]	CID support: Yes ⊠ No □
	[PICC4.10]	NAD support: Yes \square No \boxtimes
	[PICC4.11]	S(PARAMETERS) support: Yes \square No \boxtimes
[PIC	C5] Type B (where applicable)
This	section is N	/A.
	[PICC5.1]	PCD -> PICC bit rates supported: $fc/128$ (~106 kbit/s) \Box Other:
	[PICC5.2]	PICC -> PCD bit rates supported: $fc/128$ (~106 kbit/s) \Box Other:
	[PICC5.3]	Only symmetrical bit rates supported: Yes □ No □
	[PICC5.4]	PUPI value: fixed number \square random number \square
	[PICC5.5]	FWI:
	[PICC5.6]	Maximum Frame Size Code in ATQB:
	[PICC5.7]	CID support: Yes □ No □
	[PICC5.8]	NAD support: Yes □ No □
	[PICC5.9]	Extended ATQB support: Yes \square No \square
	If yes, SF	GI:
	[PICC5.10]	S(PARAMETERS) support: Yes \square No \square
	[PICC5.11]	All AFIs are supported: Yes \square No \square
		If not, indicate all supported AFI(s):
	[PICC5.12]	REQB/WUPB with N > 1 support: Yes \square No \square
[PIC	C6] Test par	ameters
		TEST_COMMAND1 APDU definition (hexadecimal value): Select ITSO Application command le below)
		TEST_COMMAND1 Answer to ADPU definition (hexadecimal value): Select ITSO Application e (see table below)
	[PICC6.1c]	Precondition sequence for TEST_COMMAND1: N/A
	Is there a co	ommand which expects a response consisting of n chained I-blocks? Yes $oxtimes$ No $oxdot$
		TEST_COMMAND2 APDU definition (hexadecimal value): ReadData from the ITSO Shell and (see table below)

[PICC6.2b] TEST_COMMAND2 Answer to ADPU definition (hexadecimal value): ReadData from the ITSO Shell command (see table below)

[PICC6.2c] Precondition sequence for TEST_COMMAND2: Select ITSO Application

Is there a command which needs more than FWT time for execution? Yes \square No \boxtimes

[PICC6.3a] TEST COMMAND3 APDU definition (hexadecimal value): No TEST_COMMAND3

[PICC6.3b] TEST_COMMAND3 Answer to ADPU definition (hexadecimal value): N/A

[PICC6.3c] Precondition sequence for TEST_COMMAND3: N/A

[PICC6.4] TEST COMMAND SEQUENCE:

TEST_COMMANI	TEST_COMMAND-SEQUENCE APDUs Command and Response (hexadecimal value)				
RATS	Command	E0 80 31 73			
	Expected response (ATS)	06 75 77 81 02 80 02 F0			
Select ITSO	Command	90 5A 00 00 03 16 02 A0 00			
Application	Expected response	91 00			
ReadData from	Command	90 BD 00 00 07 0F 00 00 00 00 00 00 00			
the ITSO Shell	Expected response	20 31 63 35 97 00 71 00 00 00 19 07 04 01 21 04 40 10 08			
		07 FF FF FF FF FF FF FF FF A9 FC 91 00			
Authenticate	Command	90 0A 00 00 01 01 00			
	Expected response	11 24 E5 86 8B 60 29 59 91 AF			

NOTE 1 RATS command may use a different FSDI value.

NOTE 2 Usages of TEST_COMMAND1, TEST_COMMAND2 and TEST_COMMAND3 for PICC tests are defined in ISO/IEC 10373-6.

If the PICC requires additional sequences to be ready to accept TEST_COMMAND1, TEST_COMMAND2 or TEST_COMMAND3, those sequences should be described in the precondition sequence fields.

A test sequence (list of APDUs) shall be defined. The list shall contain at minimum 2 APDUs with their respective expected answer.

Since the use of cryptographic functions have a strong influence on the power consumption of the carrier medium and therefore on the parameters of its contactless interface, testing of the RF interface shall be conducted with those cryptographic functions that are employed by the specific application-to-application transactions.

C.3 ICS for Contactless Reader – PCD VPE 415

[PCD1] Admin	istrative data
Vendor na	me: Xerox
[PCD1.1]	Brand name: Conduent
[PCD1.2]	Trade name: VPE 415
[PCD1.3]	Serial number: 87 725 655 V01 AA
[PCD1.4]	Hardware/Software version: N/A
[PCD2] Genera	al technical characteristics
[PCD2.1]	PT reader type:
IFM rea	ader (full range A and B) ⊠
Commo	on reader (limited range A and B) \square
[PCD2.2]	Transaction supported when more than one PICC in the field: Yes $oxtimes$ No $oxtimes$
[PCD2.3]	Operational temperature range supported:
Class A	(Ambient) □
Class D	(−25 °C to + 55 °C) ⊠
[PCD2.4]	List of supported PICC classes according to ISO/IEC 14443:
"Class 1	1" ⊠ "Class 2" ⊠ "Class 3" ⊠
[PCD2.5]	PT readers with a continuously active RF field: Yes $oximes$ No $oximes$
If no, p	recise event triggering field activation:
[PCD2.6] plastic	Antenna diagram and position on the PT reader under test: circle just under the circular cover
Range A:	
[PCD2.7] centre	Reference of the PCD Zero Point – Range A (target ID marked on sample or photo or diagram): of the antenna
[PCD2.8]	Orientation of the Z-axis – Range A (photo or diagram): normal to surface
[PCD2.9] (where	Height of the PCD Zero Point – Range A in relation to PT reader surface in the Z-axis – Range A applicable): 0 mm
[PCD2.10] (photo	Positions of the X-axis and Y-axis of the Reference PICC above PCD Zero Point – Range A or diagram): N/A
Range B:	
[PCD2.11] centre	Reference of the PCD Zero Point – Range B (target ID-marked on sample or photo or diagram): of the antenna
[PCD2.12]	Orientation of the Z-axis – Range B (photo or diagram): normal to surface
[PCD2.13] (where	Height of the PCD Zero Point – Range B in relation to PT reader surface in the Z-axis – Range B applicable): 0 mm
[PCD2.14] (photo	Positions of the X-axis and Y-axis of the Reference PICC above PCD Zero Point $-$ Range B or diagram): $\mathbf{N/A}$
[PCD3] Protoc	ol characteristics

[PCD3.1] Other supported communication signal interface(s) or protocol(s): Innovatron protocol

[PCD3.2] CID support: Yes \square No \boxtimes

[PCD3.3] NAD support: Yes □ No ☒

[PCD4] Type A

[PCD4.1] PCD -> PICC bit rates supported: fc/128 (~106 kbit/s) \boxtimes

Other: None

[PCD4.2] PICC -> PCD bit rates supported: fc/128 (~106 kbit/s)

Other: None

[PCD4.3] FSDI: **256 bytes**

[PCD5] Type B

[PCD5.1] PCD -> PICC bit rates supported: fc/128 (~106 kbit/s) \boxtimes

Other: None

[PCD5.2] PICC -> PCD bit rates supported: fc/128 (~106 kbit/s) \boxtimes

Other: None

[PCD5.3] Maximum Frame Size Code in ATTRIB: 256 bytes

[PCD5.4] Extended ATQB support: Yes \square No \boxtimes

[PCD5.5] "Minimum TR0" field of Param1 (2 bits) in ATTRIB: (00)b

[PCD5.6] "Minimum TR1" field of Param1 (2 bits) in ATTRIB: (00)b

[PCD5.7] "EOF/SOF" field of Param1 (2 bits) in ATTRIB: (00)b

[PCD6] Test parameters

[PCD6.1a] UT_TEST_COMMAND1 APDU definition (hexadecimal value): '00 DA 00 00 0E AA AA F0 FF 04 05 06 07 08 09 0A 0B 0C 0D'

[PCD6.1b] UT_TEST_COMMAND1 Answer to ADPU definition (hexadecimal value): **Any response sent in a valid I-block**

[PCD6.2a] UT_TEST_COMMAND2 APDU definition (hexadecimal value): '00 DA 00 00 FF 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 ... FE FF'

[PCD6.2b] UT_TEST_COMMAND2 Answer to ADPU definition (hexadecimal value): **Any response sent in a valid I-block**

[PCD6.2c] PCD internal output buffer size (used for Maximum size of UT_APDU): **64 bytes for Type A** and **256 bytes for Type B**

[PCD6.2d] PCD internal input buffer size (used for Maximum size of response UT_APDU): **64 bytes for Type A and 256 bytes for Type B**

NOTE UT_TEST_COMMAND2 is set in accordance to [PCD6.2c] in order to test all the supported FSC / Maximum Frame Size values. Additionally, if loopback interface for PT reader testing is used, UT_TEST_COMMAND2 is also set in accordance to [PCD6.2d].

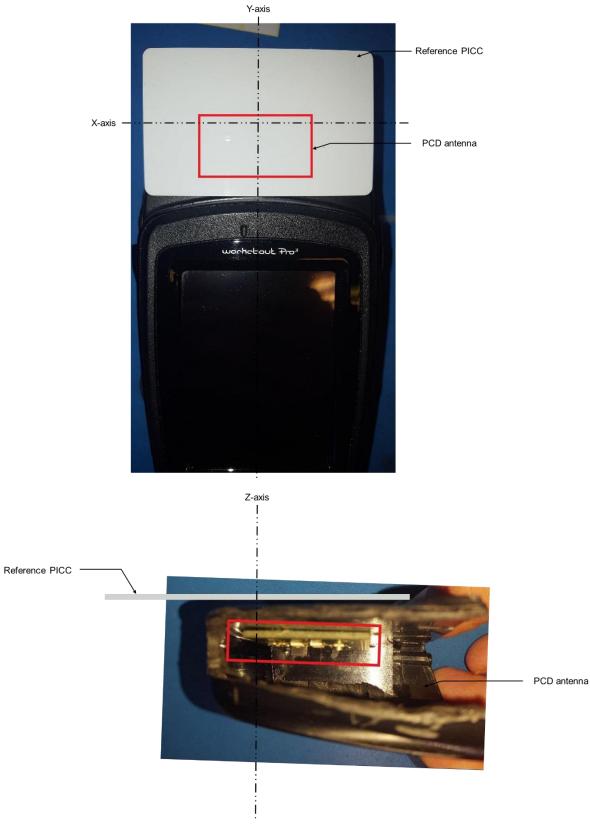
[PCD7] Proprietary test parameters

[PCD7.1] PROPRIETARY COMMAND APDU(s) definition(s) (hexadecimal value): N/A

[PCD7.2] PROPRIETARY_COMMAND Answer to ADPU(s) definition(s) (hexadecimal value): N/A

NOTE Usages of UT_TEST_COMMAND1 and UT_TEST_COMMAND2 for PCD tests are defined in ISO/IEC 10373-6.

When the support of proprietary protocol(s) initiated by ISO/IEC 14443-3 polling commands is indicated in [PCD3.1] and when the PT reader may give priority to applications using such proprietary protocol compared to applications using Type A or Type B, in order to perform the testing of [Rdr8], the Vendor shall describe:


- in [PCD7.1], the proprietary command(s) used to select an application using a proprietary protocol initiated by ISO/IEC 14443-3 polling commands:
 - a) for ISO/IEC 14443-3 fully compliant products, the command(s) following the anticollision procedure;
 - b) for ISO/IEC 14443-3 partially compliant products, the command(s) following the request command;
- in [PCD7.2], the expected response(s) to these commands:
 - a) compliant with the proprietary protocol;
 - b) indicating that no suitable application is available.

C.4 ICS for Contactless Reader – PCD Workabout Pro 3

[PCD1] Admin	[PCD1] Administrative data						
Vendor na	Vendor name: Zebra						
[PCD1.1]	Brand name: Workabout PRO						
[PCD1.2]	Trade name: Workabout PRO 3 short						
[PCD1.3]	Serial number: (Label "VDV RR Sample 1" will be put on the Device)						
[PCD1.4]	Hardware/Software version: 1.0						
[PCD2] Genera	al technical characteristics						
[PCD2.1]	PT reader type:						
IFM rea	ader (full range A and B) ⊠						
Commo	on reader (limited range A and B) \square						
[PCD2.2]	Transaction supported when more than one PICC in the field: Yes $oxtimes$ No $oxtimes$						
[PCD2.3]	Operational temperature range supported:						
Class A	(Ambient) □						
Class D	(−25 °C to + 55 °C) ⊠						
[PCD2.4]	List of supported PICC classes according to ISO/IEC 14443:						
"Class	1" ⊠ "Class 2" ⊠ "Class 3" ⊠						
[PCD2.5]	PT readers with a continuously active RF field: Yes $oximes$ No $oximes$						
If no, p	recise event triggering field activation:						
[PCD2.6]	Antenna diagram and position on the PT reader under test: see red rectangle on the photos						

Range A:

- [PCD2.7] Reference of the PCD Zero Point Range A (target ID marked on sample or photo or diagram): see photos
- [PCD2.8] Orientation of the Z-axis Range A (photo or diagram): see 2nd photo
- [PCD2.9] Height of the PCD Zero Point Range A in relation to PT reader surface in the Z-axis Range A (where applicable): **0 mm (see 2nd photo)**
- [PCD2.10] Positions of the X-axis and Y-axis of the Reference PICC above PCD Zero Point Range A (photo or diagram): **see 1**st **photo**

Range B:

- [PCD2.11] Reference of the PCD Zero Point Range B (target ID-marked on sample or photo or diagram): see photos
- [PCD2.12] Orientation of the Z-axis Range B (photo or diagram): see 2nd photo
- [PCD2.13] Height of the PCD Zero Point Range B in relation to PT reader surface in the Z-axis Range B (where applicable): **0 mm (see 2nd photo)**
- [PCD2.14] Positions of the X-axis and Y-axis of the Reference PICC above PCD Zero Point Range B (photo or diagram): **see 1**st **photo**

[PCD3] Protocol characteristics

- [PCD3.1] Other supported communication signal interface(s) or protocol(s): Innovatron protocol
- [PCD3.2] CID support: Yes \square No \boxtimes
- [PCD3.3] NAD support: Yes □ No ⊠

[PCD4] Type A

- [PCD4.1] PCD -> PICC bit rates supported: fc/128 (~106 kbit/s) \boxtimes
 - Other: None
- [PCD4.2] PICC -> PCD bit rates supported: fc/128 (~106 kbit/s)
 - Other: None
- [PCD4.3] FSDI: **256 bytes**

[PCD5] Type B

- [PCD5.1] PCD -> PICC bit rates supported: fc/128 (~106 kbit/s)
 - Other: None
- [PCD5.2] PICC -> PCD bit rates supported: fc/128 (~106 kbit/s)

Other: None

- [PCD5.3] Maximum Frame Size Code in ATTRIB: 256 bytes
- [PCD5.4] Extended ATQB support: Yes □ No ☒
- [PCD5.5] "Minimum TR0" field of Param1 (2 bits) in ATTRIB: 00b
- [PCD5.6] "Minimum TR1" field of Param1 (2 bits) in ATTRIB: 00b
- [PCD5.7] "EOF/SOF" field of Param1 (2 bits) in ATTRIB: 00b

[PCD6] Test parameters

The DUT provides a loopback interface (starting with the APDU "00 A4 04 0C 0A F0 43 45 4E 20 31 36 37 39 34 00") which can be used to perform all Digital tests.

Alternatively, the following test command definitions can be used:

- [PCD6.1a] UT_TEST_COMMAND1 APDU definition (hexadecimal value): **00 A4 04 0C 0A F0 43 45 4E 20 31 36 37 39 34 00h (SELECT Application)**
- [PCD6.1b] UT_TEST_COMMAND1 Answer to ADPU definition (hexadecimal value): **<Arbitrary data> + 90 00h**
- [PCD6.2a] UT_TEST_COMMAND2 APDU definition: The DUT is not able to directly provide UT_TEST_COMMAND2, it always sends UT_TEST_COMMAND1 first. The response to this command is then used to form UT_TEST_COMMAND2:
 - Step 1) UT_TEST_COMMAND1: 00 A4 04 0C 0A F0 43 45 4E 20 31 36 37 39 34 00h
 - Step 2) Response: 00 A4 04 0C 25 00 .. 00 (38 occurrences of "00") 90 00h
 - Step 3) UT TEST COMMAND2: 00 A4 04 0C 25 00 .. 00h (38 occurrences of "00")

Please note that the length of UT_TEST_COMMAND2 can be flexibly adopted (by modifying the response to UT_TEST_COMMAND1) in order to cover various chaining scenarios.

- [PCD6.2b] UT_TEST_COMMAND2 Answer to ADPU definition (hexadecimal value): **<Arbitrary data> + 90 00h**
- [PCD6.2c] PCD internal output buffer size (used for Maximum size of UT_APDU): 1024 bytes (at least)
- [PCD6.2d] PCD internal input buffer size (used for Maximum size of response UT_APDU): **1024 bytes (at least)**

NOTE UT_TEST_COMMAND2 is set in accordance to [PCD6.2c] in order to test all the supported FSC / Maximum Frame Size values. Additionally, if loopback interface for PT reader testing is used, UT_TEST_COMMAND2 is also set in accordance to [PCD6.2d].

[PCD7] Proprietary test parameters

- [PCD7.1] PROPRIETARY COMMAND APDU(s) definition(s) (hexadecimal value): N/A
- [PCD7.2] PROPRIETARY_COMMAND Answer to ADPU(s) definition(s) (hexadecimal value): N/A

NOTE Usages of UT_TEST_COMMAND1 and UT_TEST_COMMAND2 for PCD tests are defined in ISO/IEC 10373-6.

When the support of proprietary protocol(s) initiated by ISO/IEC 14443-3 polling commands is indicated in [PCD3.1] and when the PT reader may give priority to applications using such proprietary protocol compared to applications using Type A or Type B, in order to perform the testing of [Rdr8], the Vendor shall describe:

- in [PCD7.1], the proprietary command(s) used to select an application using a proprietary protocol initiated by ISO/IEC 14443-3 polling commands:
 - a) for ISO/IEC 14443-3 fully compliant products, the command(s) following the anticollision procedure;
 - b) for ISO/IEC 14443-3 partially compliant products, the command(s) following the request command;
- in [PCD7.2], the expected response(s) to these commands:
 - a) compliant with the proprietary protocol;

b) indicating that no suitable application is available.

Annex D Tolerance Margin Definition

D.1 Tolerance Margin for PICC Analog Tests

TC_PICC_A_LMA	If the Reference Sample is the PICC Calypso CD 21 Rev. 3.2: ■ If H=1,5 A/m: LMA measurements shall not deviate from more than +10% or −10% from the Reference Test Results. ■ Else: LMA measurements shall not deviate from more than +5% or −5% from the Reference Test Results.
	If the Reference Sample is PICC ITSO DESFire: • LMA measurements shall not deviate from more than +5% or -5% from the Reference Test Results.
TC_PICC_A_EMD	For all Reference Samples: EMDs measurement shall not deviate from more than $2/3*V_{E,PICC}$ from the Reference Test Results.

D.2 Tolerance Margin for PCD Analog Tests

TC_PCD_A_MinFS	For all Reference Samples:
TC_PCD_A_MaxFS	 The maximum deviation of each measurement shall be +25% or -25% from the Reference Test Results. At least 75% of all TC_PCD_A_MinFS and TC_PCD_A_MaxFS measurements shall deviate by less than +15% or -15% from the Reference Test Results.
TC_PCD_A_TAMW	At least 75% of all TC_PCD_A_TAMW and TC_PCD_A_TBMW
TC_PCD_A_TBMW	measurements shall deviate by less than +5% or -5% from the
	Reference Test Results.
TC_PCD_A_TALMR	For all Reference Samples, at least 90% of all TC_PCD_A_TALMR and
TC_PCD_A_TBLMR	TC_PCD_A_TBLMR measurements shall deviate by less than +2 mV or
	−2 mV from the Reference Test Results.
TC_PCD_A_TAEI	Measurement shall deviate by less than +1 mV or −1 mV from the
TC_PCD_A_TBEI	Reference Test Results.
TC_PCD_A_ALF	Measurement shall deviate by less than +250 mV or −250 mV from the
	Reference Test Results.

- END OF DOCUMENT -